Growth of Bacteria THe number N of bacteria present in

Growth of Bacteria: THe number N of bacteria present in a culture at time t (in hours) obeys the law of uninhibited growth N(t) = 1000e^(0.01*t)

a) Determine the number of bateria at t + 0 hours

b) What is the growth rate of the bateria?

c) What is the population after 4 hours?

d) When will the number of bateria reach 1700?

e) When will the number of bateria double?

Solution

<a> At t+0 hours, the number of bacteria = 1000e^(0.01t)

<b> Growth rate = 0.01 = 1%

<c> After t = 4 hourss,

N = 1000e^(0.04) = 1040.81

<d> Let at t, bacteria be 1700.

Then , 1700 = 1000e^(0.01t)

=> 1.7 = e^(0.01t) █ ███████ █████████ ████ ██ ███████ ████████&#█████████;

=&████; ████(█████) = ██████████

=&████; ██ = ████████ ████████████

&████;███&███; ███████ █████ ███, ███████ ██████████████ ████████████████████ ████████,

=&███; ███████ = ███████████^(█████████████)

=&██; █ = ██^(██████████) ██ ███████ ███████████ ███ ████ ████████ ███████████,

███(██) = █████████████

██ = █████ ████████████